A Mathematical Model to Predict the Tensile Strength of Asphalt Concrete Using Quarry Dust Filler

Kenneth Miebaka Oba*

Abstract

The Indirect Tensile Strength is the easiest way to determine the tensile strength of Asphalt concrete, which in turn determines the ability of the concrete to withstand cracking, fatigue, and rutting. In this study, four ingredients of the asphalt concrete blend being asphalt binder, sand, granite, and quarry dust filler were used to produce the specimens. Scheffe's simplex theory was used for four mix ratios in a $\{4,2\}$ experimental design which resulted in additional six mix ratios. For purposes of verification and testing, additional ten mix ratios were generated. The twenty asphalt concrete mix ratios were subjected to laboratory experiments to determine their Indirect Tensile Strengths. The results of the first ten Indirect Tensile Strengths were used for the calibration of the model constant coefficients, while those from the second ten were used for the model verification using Scheffe's simplex lattice design. A mathematical regression model was derived from the experimental results, with which the Indirect Tensile Strengths were predicted. The derived model was subjected to a two-tailed t -test with 5% significance, which ascertained the model to be adequate with an R^{2} value of 0.7848 . The study revealed that Sheffe's model can also be applied to asphalt concrete. Asphalt concrete mix ratios were subjected to laboratory experiments to determine their Indirect Tensile Strengths. The results of the first ten Indirect

Index Terms: Asphalt Concrete, Indirect Tensile Strength, Scheffe's Simplex Lattice, Quarry Dust

1. INTRODUCTION

Flexible pavements are subjected to repeated wheel loads that result in cracking, fatigue, and rutting of the pavement. The higher the tensile strength, the higher the ability of the pavement to resist cracking and fatigue. The indirect tensile strength is the easiest way to determine the tensile strength of an asphalt concrete specimen using the split tensile test, as it is not easy to determine the tensile strength directly.

In this study, a mathematical model was derived using Scheffe's simplex theory, with which the Split tensile strengths of asphalt concrete specimens were predicted. There were four components in the asphalt concrete mix (quarry dust, asphalt binder, sand, and granite). This is a rather unpopular application of Scheffe's model in civil engineering research, as most similar works were done in Portland cement concrete, hence a vital research gap.

2. LITERATURE REVIEW

Several authors have studied the Indirect Tensile Strengths (ITS) of asphalt concrete [1]-[7]. Some of them [4], [5] looked at the effect of temperature on the asphalt concrete with respect to how it affects the ITS, while some, such as [2] studied the use of industrial waste materials in order to promote sustainability.

2.1 Scheffe's Simplex Theory

[^0]Several authors such as [8]-[14] have carried out concrete mixture research with the development of mathematical models. Most of such works were based on Scheffe's Simplex theory. However, all the above authors have carried out their research works on Portland cement concrete. None of them has applied the Scheffe's model to asphalt concrete.

Scheffe's model is based on the simplex lattice and simplex theory or approach [15]. The simplex approach considers a number of components, q, and a degree of polynomial, m. The sum of all the $i^{\text {th }}$ components is not greater than 1. Hence

$$
\begin{array}{r}
\sum_{i=1}^{q} x_{i}=1 \\
\boldsymbol{x}_{1}+\boldsymbol{x}_{2}+\cdots+\boldsymbol{x}_{\boldsymbol{q}}=\mathbf{1} \tag{2}
\end{array}
$$

with $0 \leq x \leq 1$. The factor space becomes S_{q-1}. According to [15] the $\{q, m\}$ simplex lattice design is a symmetrical arrangement of points within the experimental region in a suitable polynomial equation representing the response surface in the simplex region.

The number of points $C_{m}^{(q+m-1)}$ has $(\mathrm{m}+1)$ equally spaced values of $x_{i}=0,1 / m, 2 / m, \ldots . m / m$. For a 3-component mixture with degree of polynomial 2 , the corresponding number of points will be $C_{2}^{(3+2-1)}$ which gives 6 (eq. 3 or eq. 4 below) with number of spaced values, $2+1=3$, that is $x_{i}=0$, $1 / 2$, and 1 and design points of $(1,0,0),(0,1,0),(0,0,1)$, $(1 / 2,1 / 2,0),(1 / 2,01 / 2)$, and ($0,1 / 2,1 / 2$). Similarly, for a $\{4,2\}$ simplex, there will be 10 points with $x_{i}=0,1 / 2$, and 1 as spaced values. The 10 design points are ($1,0,0,0$), ($0,1,0,0$), $(0,0,1,0), \quad(0,0,0,1), \quad(1 / 2,1 / 2,0,0), \quad(1 / 2,0,1 / 2,0), \quad(1 / 2,0,0,1 / 2)$, (0,1/2,1/2,0), (0,1/2,0,1/2), (0,0,1/2,1/2).

$$
\begin{equation*}
N=C_{n}^{(q+n-1)} \tag{3}
\end{equation*}
$$

or
IJSER © 2019
http://www.iiser.org

$$
N=\frac{(q+n-1)!}{(q-1)!(n)!}
$$

For a polynomial of degree m with q component variables where eq. (2) holds, the general form is:

$$
\begin{align*}
Y=b_{0}+\sum b_{i} x_{i} & +\sum b_{i j} x_{i} x_{j}+\sum b_{i j k} x_{i} x_{j} x_{k}+\cdots \\
& +\sum b_{i 1, i 2 \ldots i n} x_{i 1} x_{i 2} x_{i n} \tag{5}
\end{align*}
$$

Where $1 \leq i \leq q, 1 \leq i \leq j \leq q, 1 \leq i \leq j \leq k \leq q$, and b_{0} is the constant coefficient.
x is the pseudo component for constituents i, j, and k.
When $\{q, m\}=\{4,2\}$, eq. (5) becomes:
$Y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}+b_{12} x_{1} x_{2}+b_{13} x_{1} x_{3}+$ $b_{14} x_{1} x_{4}+b_{23} x_{2} x_{3}+b_{24} x_{2} x_{4}+b_{34} x_{3} x_{4}++b_{11} x_{1}^{2}+$
$b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{44} x_{4}^{2}$
(6)
and eq. (2) becomes
$x_{1}+x_{2}+x_{3}+x_{4}=1$
Multiplying eq. (7) by b_{0} gives

$$
\begin{equation*}
b_{0} x_{1}+b_{0} x_{2}+b_{0} x_{3}+b_{0} x_{4}=b_{0} \tag{8}
\end{equation*}
$$

Multiplying eq. (7) successively by x_{1}, x_{2}, x_{3}, and x_{4} and making x_{1}, x_{2}, x_{3}, and x_{4} the subjects of the respective formulas:

$$
\begin{align*}
& x_{1}^{2}=x_{1}-x_{1} x_{2}-x_{1} x_{3}-x_{1} x_{4} \\
& x_{2}^{2}=x_{2}-x_{1} x_{2}-x_{2} x_{3}-x_{2} x_{4} \\
& \boldsymbol{x}_{3}^{2}=\boldsymbol{x}_{3}-\boldsymbol{x}_{1} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} \boldsymbol{x}_{3}-\boldsymbol{x}_{3} \boldsymbol{x}_{4} \tag{9}\\
& x_{4}^{2}=x_{4}-x_{1} x_{4}-x_{2} x_{4}-x_{3} x_{4}
\end{align*}
$$

Substituting eq. (8) and eq. (9) into eq. (6) we have:

$$
\begin{align*}
& Y=b_{0} x_{1}+b_{0} x_{2}+b_{0} x_{3}+b_{0} x_{4}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4} \\
&+b_{12} x_{1} x_{2}+b_{13} x_{1} x_{3}+b_{14} x_{1} x_{4}+b_{23} x_{2} x_{3} \\
&+b_{24} x_{2} x_{4}+b_{34} x_{3} x_{4} \\
&+b_{11}\left(x_{1}-x_{1} x_{2}-x_{1} x_{3}-x_{1} x_{4}\right) \\
&+b_{22}\left(x_{2}-x_{1} x_{2}-x_{2} x_{3}-x_{2} x_{4}\right) \\
&+b_{33}\left(x_{3}-x_{1} x_{3}-x_{2} x_{3}-x_{3} x_{4}\right) \\
&+b_{44}\left(x_{4}-x_{1} x_{4}-x_{2} x_{4}-x_{3} x_{4}\right) \\
& Y=\left(b_{0}+b_{1}+b_{11}\right) x_{1}+\left(b_{0}+b_{2}+b_{22}\right) x_{2}+\left(b_{0}+b_{3}+\right. \\
&\left.b_{33}\right) x_{3}+\left(b_{0}+b_{4}+b_{44}\right) x_{4}+\left(b_{12}-b_{11}-b_{22}\right) x_{1} x_{2}+\left(b_{13}-\right. \\
&\left.b_{11}-b_{33}\right) x_{1} x_{3}+\left(b_{14}-b_{11}-b_{44}\right) x_{1} x_{4}+\left(b_{23}-b_{22}-\right. \\
&\left.b_{33}\right) x_{2} x_{3}+\left(b_{24}-b_{22}-b_{44}\right) x_{2} x_{4}+\left(b_{34}-b_{33}-b_{44}\right) x_{3} x_{4} \tag{10}
\end{align*}
$$

3. MATERIALS AND METHODS

Asphalt binder, sand, granite, and quarry dust were the materials used to produce the asphalt concrete. The asphalt binder content was varied between 4.5% and 6% of the total weight of the samples. The specific gravities of the constituent materials were carried out as well as the bulk

Let
$\left.\begin{array}{l}\beta_{1}=b_{0}+b_{1}+b_{11} \\ \beta_{2}=b_{0}+b_{2}+b_{22} \\ \boldsymbol{\beta}_{\mathbf{3}}=\boldsymbol{b}_{\mathbf{0}}+\boldsymbol{b}_{\mathbf{3}}+\boldsymbol{b}_{3 \mathbf{3}} \\ \boldsymbol{\beta}_{\mathbf{4}}=\boldsymbol{b}_{\mathbf{0}}+\boldsymbol{b}_{\mathbf{4}}+\boldsymbol{b}_{\mathbf{4 4}} \\ \beta_{12}=b_{12}-b_{11}-b_{22} \\ \beta_{13}=b_{13}-b_{11}-b_{33} \\ \boldsymbol{\beta}_{\mathbf{1 4}}=\boldsymbol{b}_{\mathbf{1 4}}-\boldsymbol{b}_{\mathbf{1 1}}-\boldsymbol{b}_{\mathbf{4 4}} \\ \beta_{23}=b_{23}-b_{22}-b_{33} \\ \beta_{24}=b_{24}-b_{22}-b_{44} \\ \beta_{34}=b_{34}-b_{33}-b_{44}\end{array}\right]$
Substituting eq. (11) into eq. (10) gives
$Y=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\beta_{12} x_{1} x_{2}+\beta_{13} x_{1} x_{3}+$
$\beta_{14} x_{1} x_{4}+\beta_{23} x_{2} x_{3}+\beta_{24} x_{2} x_{4}+\beta_{34} x_{3} x_{4}$
This can be rewritten as:

$$
\begin{equation*}
Y=\sum_{i=1}^{4} \beta_{i} x_{i}+\sum_{1 \leq i \leq i \leq 4} \beta_{i j} x_{i} x_{j} \tag{13}
\end{equation*}
$$

Where the response, Y is a dependent variable (Indirect Tensile strength of concrete). Eq. (12) is the general equation for a $\{4,2\}$ polynomial, and it has 10 terms, which conforms to Scheffe's theory in eq. (3).
Let Y_{i} denote response to pure components, and $Y_{i j}$ denote response to mixture components in i and j. If $x_{i}=1$ and $x_{j}=0$, sice $j \neq i$, then

Which means

$$
\begin{equation*}
\boldsymbol{Y}_{i}=\boldsymbol{\beta}_{i} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{4} \beta_{i} x_{i}=\sum_{i=1}^{4} Y_{i} x_{i} \tag{15}
\end{equation*}
$$

Hence, from eq. (14)

$$
\left.\begin{array}{l}
Y_{1}=\beta_{1} \tag{16}\\
\boldsymbol{Y}_{2}=\boldsymbol{\beta}_{2} \\
\boldsymbol{Y}_{3}=\boldsymbol{\beta}_{3} \\
\boldsymbol{Y}_{4}=\boldsymbol{\beta}_{4}
\end{array}\right\}
$$

According to [15], $\beta_{i j}=4 Y_{i j}-2 \beta_{i}-2 \beta_{j}$
Substituting eq. (14) $\quad \beta_{i j}=4 Y_{i j}-2 Y_{i}-2 Y_{j}$
specific gravity of the compacted specimen. Two replicates were made for the compacted specimen with cylindrical diameter of 10.16 cm with height of 6.35 cm . This gives a total of 8 specimens in the first round of experiments. Table 1 below shows the Marshal Design results for the specimen with 4.5% binder content.

TABLE 1
Mix design Results for $4.5 \% \mathrm{~Pb}_{\mathrm{b}}$

ISSN 2229-5518

S/N	Description	Binder	Absorbed binder	Effective binder	Fine	Coarse	Filler	Void
1	\% aggregate				42	54	4	
	\% weight of compacted specimen	4.5	0		95.5			
	Bulk density of compacted specimen ($\mathrm{g} / \mathrm{cm}^{3}$)	2.29						
	Total weight (g)	53.052	0.000		1125.874			
	Weight of ingredient (g)	53.052	0.000		472.867	607.972	45.035	0
	Specific gravity	1.051	0		2.623	2.75	2.677	
	Volume of compacted specimen (cm^{3})	514.815						
	Volume (cm^{3})	50.477	0.000	50.477	180.277	221.081	16.823	46.157
	VTM (\%)	9.0						
	VMA (\%)	18.8						
	VFA (\%)	52.2						

The same procedure was repeated for $5 \%, 5.5 \%$, and 6% binder contents and the summary of the results given in table 2 below.

Table 2
Mix design Result summary

\% P $\mathbf{P}_{\mathbf{b}}$	Quarry dust (g)	Asphalt (\mathbf{g})	Sand (\mathbf{g})	Granite (\mathbf{g})
4.5	45.035	53.052	472.867	607.972
5	45.697	60.128	479.823	616.915
5.5	46.091	67.064	483.959	622.233
6	46.322	73.919	486.385	625.352

The first four mix ratios were derived from table 2 as:
AC4.5 = $\left[\begin{array}{llll}0.8489 & 1 & 8.9133 & 11.4600\end{array}\right] ;$
$\mathrm{AC} 5=\left[\begin{array}{llll}0.7600 & 1 & 7.9800 & 10.2600\end{array}\right] ;$
AC5.5 = $\left[\begin{array}{llll}0.6873 & 1 & 7.2164 & 9.2782\end{array}\right] ;$
AC6 = $\left[\begin{array}{llll}0.6267 & 1 & 6.5800 & 8.4600\end{array}\right] ;$

These can be put in matrix form as follows:
$\mathrm{S}=\left[\begin{array}{cccc}0.8489 & 0.7600 & 0.6873 & 0.626743 \\ 1 & 1 & 1 & 1 \\ 8.9133 & 7.9800 & 7.2164 & 6.5800 \\ 11.4600 & 10.2600 & 9.2782 & 8.4600\end{array}\right]$
(19)

Their corresponding pseudo components are given as:

$$
X=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \tag{20}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

With centre points
$\mathrm{X}_{12}=\left[\begin{array}{llll}0.5 & 0.5 & 0 & 0\end{array}\right] ; \quad X_{13}=\left[\begin{array}{llll}0.5 & 0 & 0.5 & 0\end{array}\right] ;$
$X_{14}=\left[\begin{array}{llll}0.5 & 0 & 0 & 0.5\end{array}\right] ;$
$\mathrm{X}_{24}=\left[\begin{array}{llll}0 & 0.5 & 0 & 0.5\end{array}\right] ;$
$\mathrm{X}_{23}=\left[\begin{array}{llll}0 & 0.5 & 0.5 & 0\end{array}\right] ;$
$\mathrm{X}_{34}=\left[\begin{array}{llll}0 & 0 & 0.5 & 0.5\end{array}\right]$
According to Scheffe, (1958),
$\mathrm{S}_{\mathrm{ij}}=\mathrm{XS} \mathrm{S}_{\mathrm{i}}$
Substituting,

$$
\left[\begin{array}{l}
S_{12} \tag{22}\\
S_{13} \\
S_{14} \\
S_{23}
\end{array}\right]=\left[\begin{array}{cccc}
0.5 & 0.5 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 \\
0.5 & 0 & 0 & 0.5 \\
0 & 0.5 & 0.5 & 0
\end{array}\right] *\left[\begin{array}{c}
0.8044 \\
0.7681 \\
0.7378 \\
0.7236
\end{array}\right]
$$

This process is repeated for S_{24} and S_{34}. Similarly, this process is repeated for an additional 10 (control) points that will be used for the verification of the formulated model (second round of experiments). The regular tetrahedrons for the actual components with their corresponding pseudo components are given in figures (1) and (2) respectively.

Fig. 1. Simplex plot for actual components

Fig. 2. Simplex plot for pseudo components

Table 3
Actual Mix Ratios

Sample Points	Actual Components				Response $Y_{\text {exp }}$	Pseudo Components			
	Quarry dust	Asphalt	Sand	Granite		Quarry dust	Asphalt	Sand	Granite
	S_{1}	S_{2}	S_{3}	S_{4}		X_{1}	X_{2}	X_{3}	X4
AC4.5	0.8489	1	8.9133	11.4600	Y_{1}	1	0	0	0
AC5	0.7600	1	7.9800	10.2600	Y_{2}	0	1	0	0
AC5.5	0.6873	1	7.2164	9.2782	Y_{3}	0	0	1	0
AC6	0.6267	1	6.5800	8.4600	Y_{4}	0	0	0	1
N1	0.8044	1	8.4467	10.8600	Y_{12}	0.5	0.5	0	0
N2	0.7681	1	8.0648	10.3691	Y_{13}	0.5	0	0.5	0
N3	0.7378	1	7.7467	9.9600	Y_{14}	0.5	0	0	0.5
N4	0.7236	1	7.5982	9.7691	Y_{23}	0	0.5	0.5	0
N5	0.6933	1	7.2800	9.3600	Y 24	0	0.5	0	0.5
N6	0.6570	1	6.8982	8.8691	Y 34	0	0	0.5	0.5

Table 4
Control Points

Sample Points	Actual Components				$\begin{gathered} \text { Response } \\ \mathbf{Y}_{\text {exp }} \end{gathered}$	Pseudo Components			
	Quarry dust	Asphalt	Sand	Granite		Quarry dust	Asphalt	Sand	Granite
	S 1	S_{2}	S_{3}	S_{4}		X 1	X_{2}	X 3	X 4
C1	0.7654	1.0000	8.0366	10.3327	$\mathrm{Y}_{\mathrm{C} 1}$	0.3333	0.3333	0.3333	0.0000
C2	0.7176	1.0000	7.5345	9.6873	$\mathrm{Y}_{\mathrm{c} 2}$	0.0000	0.6250	0.1250	0.2500
C3	0.8065	1.0000	8.4679	10.8873	Yc3	0.6250	0.2500	0.1250	0.0000
C4	0.6913	1.0000	7.2588	9.3327	YC4	0.0000	0.3333	0.3333	0.3333
C5	0.7452	1.0000	7.8244	10.0600	Yc5	0.3333	0.3333	0.0000	0.3333
C6	0.7140	1.0000	7.4974	9.6395	Yc6	0.2500	0.1250	0.2500	0.3750
C7	0.7368	1.0000	7.7361	9.9464	Y_{C7}	0.2500	0.1250	0.6250	0.0000
C8	0.6787	1.0000	7.1262	9.1623	Yc8	0.1250	0.1250	0.1250	0.6250
C9	0.7209	1.0000	7.5699	9.7327	Yc9	0.3333	0.0000	0.3333	0.3333
C10	0.7307	1.0000	7.6724	9.8645	YC10	0.2500	0.2500	0.2500	0.2500

4. INDIRECT TENSILE TEST

The Asphalt concrete samples were prepared in cylindrical shapes of 63.5 mm X101.6mm diameter. The split tensile test which is the most commonly used indirect tensile test was used to determine the tensile strength of the asphalt concrete specimens. The specimens were subjected to a compressive load along the vertical diameter at a constant rate. This brought about a tensile split in the specimen. The Indirect tensile strength is then determined by,

$$
\begin{equation*}
f_{t}=\frac{2 P}{\pi L d} \tag{23}
\end{equation*}
$$

Where $\mathrm{P}=$ the load at failure (KN)
$\mathrm{d}=$ the diameter of the specimen in millimetres
$L=$ the span length of specimen in millimetres
Two replicates were made, and the average taken and recorded.

Table 5
Indirect Tensile Strength of Asphalt Concrete

Sample	Load (KN)		L (m)	d (m)	$\frac{2 P}{\pi L d}$	Indirect Tensile Strength ($\mathrm{N} / \mathrm{mm}^{2}$)		
	A	B				A	B	Average
AC4.5	10.05	9.94	101.6	63.5	$9.868 \mathrm{E}-05$	0.992	0.981	0.986
AC5	10.52	10.24	101.7	63.4	$9.873 \mathrm{E}-05$	1.039	1.011	1.025
AC5.5	11.25	11.76	101.6	63.3	$9.899 \mathrm{E}-05$	1.114	1.164	1.139
AC6	12.12	12.23	101.5	63.6	$9.862 \mathrm{E}-05$	1.195	1.206	1.201
N1	10.06	10.05	101.6	63.5	$9.868 \mathrm{E}-05$	0.993	0.992	0.992
N2	11.85	11.88	101.5	63.4	$9.893 \mathrm{E}-05$	1.172	1.175	1.174
N3	12.3	12.26	101.6	63.7	$9.837 \mathrm{E}-05$	1.210	1.206	1.208
N4	12.26	12.25	101.8	63.4	$9.864 \mathrm{E}-05$	1.209	1.208	1.209
N5	10.94	11.37	101.7	63.3	$9.889 \mathrm{E}-05$	1.082	1.124	1.103
N6	11.05	11.1	101.5	63.5	$9.877 \mathrm{E}-05$	1.091	1.096	1.094
C1	11.2	11.58	101.5	63.5	$9.877 \mathrm{E}-05$	1.106	1.144	1.125
C2	11.2	11.59	101.4	63.7	$9.856 \mathrm{E}-05$	1.104	1.142	1.123
C3	10.99	10.98	101.6	63.6	$9.852 \mathrm{E}-05$	1.083	1.082	1.082
C4	11.25	11.27	101.7	63.5	$9.858 \mathrm{E}-05$	1.109	1.111	1.110
C5	11.33	11.29	101.5	63.4	$9.893 \mathrm{E}-05$	1.121	1.117	1.119
C6	11.69	11.99	101.6	63.3	$9.899 \mathrm{E}-05$	1.157	1.187	1.172
C7	12.32	12.23	101.6	63.5	$9.868 \mathrm{E}-05$	1.216	1.207	1.211
C8	11.78	11.65	101.6	63.6	$9.852 \mathrm{E}-05$	1.161	1.148	1.154
C9	12.13	11.91	101.7	63.5	$9.858 \mathrm{E}-05$	1.196	1.174	1.185
C10	11.2	11.96	101.6	63.7	$9.837 \mathrm{E}-05$	1.102	1.176	1.139

4.1 Scheffe's Model for Indirect Tensile Strength

The coefficients of polynomial from table (5), eq. (16), and eq. (18) are:
$\beta_{1}=0.986, \beta_{2}=1.025, \beta_{3}=1.139, \beta_{4}=1.201$, $\beta_{12}=4 Y_{12}-2 Y_{1}-2 Y_{2}$
$\beta_{12}=4 * 0.992-2 * 0.986-2 * 1.025=-0.054$
Similarly, $\beta_{13}=0.446, \beta_{14}=0.458, \beta_{23}=0.508$,
$\beta_{24}=-0.404, \beta_{34}=-0.304$.

Substituting the above coefficients into eq. (12) gives

$$
\begin{align*}
& Y=0.986 x_{1}+1.025 x_{2}+1.139 x_{3}+1.201 x_{4}- \\
& 0.054 x_{1} x_{2}+0.446 x_{1} x_{3}+0.458 x_{1} x_{4}+ \\
& 0.508 x_{2} x_{3}-0.404 x_{2} x_{4}-0.304 x_{3} x_{4} \tag{24}
\end{align*}
$$

Eq. (24) above is the mathematical model to predict the Indirect Tensile strength of Asphalt concrete using quarry dust as filler for the fine aggregates.

Table 6
Experimental and predicted values of Indirect Tensile Strength of Asphalt Concrete

Sample Points	Response Yexp	Pseudo Components				Indirect Tensile Strength, Y (MPa)	
		Quarry dust	Asphalt	Sand	Granite		
		X_{1}	X_{2}	X_{3}	X4	$Y_{\text {exp }}$	$\mathbf{Y}_{\text {pred }}$
AC4.5	Y_{1}	1	0	0	0	0.986	0.986
AC5	Y_{2}	0	1	0	0	1.025	1.025
AC5.5	Y_{3}	0	0	1	0	1.139	1.139
AC6	Y_{4}	0	0	0	1	1.201	1.201
N1	Y_{12}	0.5	0.5	0	0	0.992	0.992
N2	Y_{13}	0.5	0	0.5	0	1.174	1.174
N3	Y_{14}	0.5	0	0	0.5	1.208	1.208
N4	Y 23	0	0.5	0.5	0	1.209	1.209
N5	Y_{24}	0	0.5	0	0.5	1.103	1.103
N6	Y_{34}	0	0	0.5	0.5	1.094	1.094
C1	$\mathrm{Y}_{\mathrm{C} 1}$	0.3333	0.3333	0.3333	0.0000	1.125	1.150
C2	$\mathrm{Y}_{\mathrm{C} 2}$	0.0000	0.6250	0.1250	0.2500	1.123	1.107
C3	$\mathrm{Y}_{\text {c3 }}$	0.6250	0.2500	0.1250	0.0000	1.082	1.057
C4	$\mathrm{Y}_{\text {c }}$	0.0000	0.3333	0.3333	0.3333	1.110	1.140
C5	Y_{C}	0.3333	0.3333	0.0000	0.3333	1.119	1.111
C6	Yc6	0.2500	0.1250	0.2500	0.3750	1.172	1.164
C7	Y_{C7}	0.2500	0.1250	0.6250	0.0000	1.211	1.194
C8	Yc8	0.1250	0.1250	0.1250	0.6250	1.154	1.167
C9	Yc9	0.3333	0.0000	0.3333	0.3333	1.185	1.175
C10	$\mathrm{Y}_{\mathrm{C} 10}$	0.2500	0.2500	0.2500	0.2500	1.139	1.151

Fig. 3. Comparison between Experimental and Predicted Indirect Tensile Strengths

4.2 Test of adequacy of the model

A two-tailed student t-test was carried out at 95% confidence level, which implies $100-95=5 \%$ significance.
Since it is a two-tailed, significance $=5 / 2=2.5 \%$
Hence significance level $=100-2.5=97.5 \%$
Let D be difference between the experimental and predicted responses
The mean of the difference,
The variance of the difference,

$$
\begin{equation*}
D_{a}=\frac{1}{n} \sum^{n} D_{i} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
S^{2}=\left(\frac{1}{n-1}\right) \sum_{i=1}^{n}\left(D-D_{a}\right)_{i}^{2} \tag{26}
\end{equation*}
$$

Where $\mathrm{n}=$ number of observations with degree of freedom $\mathrm{n}-1 . \quad t_{\text {calculated }}=\frac{D_{a} \sqrt{n}}{S}$

$$
\begin{aligned}
S^{2}= & \frac{0.003}{10-1} \\
S & =\sqrt{0.019}=0.019 \\
t_{\text {calculated }} & =0.038
\end{aligned}
$$

Table 7
Student t-test for Indirect Tensile Strength of Concrete

Sample	Indirect Tensile Strength		t-test		
	$\mathrm{Y}_{\text {experimental }}$	$\mathrm{Y}_{\text {predicted }}$	$\mathrm{D}=\mathrm{Y}_{\text {exp }}-\mathrm{Y}_{\text {pred }}$	Da-D	(D-Da) ${ }^{2}$
C1	1.125	1.150	-0.025	0.025	0.001
C2	1.123	1.107	0.016	-0.016	0.000
C3	1.082	1.057	0.025	-0.025	0.001
C4	1.110	1.140	-0.030	0.030	0.001
C5	1.119	1.111	0.008	-0.008	0.000
C6	1.172	1.164	0.008	-0.007	0.000
C7	1.211	1.194	0.017	-0.017	0.000
C8	1.154	1.167	-0.013	0.014	0.000
C9	1.185	1.175	0.010	-0.009	0.000
C10	1.139	1.151	-0.012	0.012	0.000
TOTAL			0.002		0.0032
AVERAGE Da			0.0002		

From the t-table, $t_{(\beta, v)}$ can be determined where $v=10-1=9$, and $\beta=$ significance level. $t_{(0.975,14)}=2.626$
Since $t_{\text {calculated }}<\mathrm{t}_{(0.975,9)}$, and lies between -2.626 and 2.626 , therefore there is no significant difference between the experimental and predicted responses, H_{0} is accepted, and H_{a} is rejected. The model is confirmed to be adequate.

Fig. 4. Scatterplot of Predicted vs. Experimental Indirect Tensile Strengths

The R^{2} value of 0.7848 indicates that the experimental results are highly correlated to the predicted results. This is also an indication that the model is fit and adequate.

5. CONCLUSION

The Indirect Tensile strengths (between 1.082 and $1.211 \mathrm{~N} / \mathrm{mm}^{2}$) resulting from the different asphalt concrete mix ratios are within acceptable limits. The Marshal Design method carried out shows that the ingredients proportion were acceptable. As a result of these, a regression model has been generated from the resulting laboratory experiments using Sheffe's simplex theory. A two-tailed t-test was carried out, which confirmed the adequacy of the derived model with an R^{2} value of 0.7848 . The results also showed that Sheffe's simplex theory has been successfully applied to asphalt concrete.

REFERENCES

[1] R. Islam and R. A. Tarefder, "Tensile Strength of Asphalt Concrete due to Moisture Conditioning," Int. J. Mater. Metall. Eng., vol. 8, no. 9, pp. 999-1002, 2014.
[2] K. Anurag, F. Xiao, and S. N. Amirkhanian,
"Laboratory Investigation of Indirect Tensile Strength Using Roofing Polyester Waste Fibers in Hot Mix Asphalt," pp. 1-28, 2002.
[3] J. P. Zaniewski and G. Srinivasan, "Evaluation of Indirect Tensile Strength to Identify Asphalt Concrete Rutting Potential," Depatment of Civil and Environmental Engineering West Virginia University, Morgantown, 2004.
[4] K. L. Vasconcelos, L. B. Bernucci, and J. M. Chaves, "Effect of Temperature on the Indirect Tensile Strength Test of Asphalt Mixtures," in 5th Eurasphalt \mathcal{E} Eurobitume Congress, 2012, pp. 344-352.
[5] S. I. Sarsam and K. H. Al-Delfi, "Assessing Tensile Strength and Temperature Susceptibility of Asphalt Concrete," Appl. Reserch J., vol. 1, no. 4, pp. 279-287, 2015.
[6] A. O. Abd El Halim, Y. Hassan, K. Kandil, S. A. Bhutta, and K. Davidson, "Comparison of Mechanical Properties of Asphalt Concrete Mixes with Aged Asphalt Cements," 2001, pp. 33-49.
[7] T. W. Kennedy, "Tensile Characterization of Highway Pavement Materials," 1983, no. 15.
[8] C. U. Anya, "Models for Predicting the Structural Characteristics of Sand-Quarry

Dust Blocks," Ph.D Thesis, University of Nigeria, Nsukka, 2015.
[9] Y. M. Gamil and I. H. Bakar, "The Development of Mathematical Prediction Model to Predict Resilient Modulus for Natural Soil Stabilised by POFA-OPC Additive for the Use in Unpaved Road Design," in Soft Soil Engineering International Conference, 2015, pp. 1-11.
[10] P. N. Onuamah, "Development-and-Optimization-of-Mechanical-Strength-Model-of-Cement-Laterite-Sand-Hollow-Sandcrete-Blocks.docx," Int. J. Sci. Eng. Res., vol. 6, no. 5, pp. 645-655, 2015.
[11] E. M. Mbadike and N. N. Osadere, "Five Component Concrete Mix Optimization of Aluminum Waste Using Scheffe's Theory," Int. J. Comput. Eng. Res., vol. 4, no. 4, pp. 2331, 2014.
[12] E. M. Mbadike and N. N. Osadebe, "Application of Scheffe's model in optimization of compressive strength of lateritic concrete," J. Civ. Eng. Constr. Technol., vol. 4, no. 9, pp. 265-274, 2013.
[13] C. E. Okere, D. O. Onwuka, S. U. Onwuka, and J. I. Arimanwa, "Simplex-Based Concrete Mix Design," IOSR J. Mech. Civ. Eng., vol. 5, no. 2, pp. 46-55, 2013.
[14] N. N. Osadebe, C. C. Mbajiorgu, and T. U. Nwakonobi, "An Optimization Model Development For Laterized- Concrete Mix Proportioning in Building," Niger. J. Technol., vol. 26, no. 1, pp. 37-46, 2007.
[15] H. Scheffe, "Experiments with Mixtures," J. R. Stat. Ser. B, vol. 25, no. 2, pp. 235-263, 1958.

[^0]: * Kenneth Miebaka Oba is a Lecturer in the Department of Civil Engineering in the Rivers State University, Port Harcourt, Nigeria. E-mail: kenmieoba@yahoo.com

